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Abstract

We describe a method for using crowd-sourced labor to
track motion and ultimately annotate gestures of humans in
video. Our chosen platform for deployment, Amazon Me-
chanical Turk, divides labor into HITs (Human Intelligence
Tasks). Given the informational density of video, our task is
potentially larger than a traditional HIT that involves pro-
cessing a block of text or a single image. We exploit redun-
dancies in video data in such a way that workers’ efforts
can be multiplied in effect. In the end, a fraction of frames
need to be annotated by hand, but we can still achieve com-
plete coverage of all video frames. This is achieved with
a combination of HITs using a novel user interface, com-
bined with automatic techniques such as template tracking
and affinity propagation clustering. We show in a case study
how we can annotate a video database of political speeches
with 2D positions and 3D hand pose configurations. This
data is then used for some preliminary analytical tasks.

1. Introduction

This paper describes our efforts in utilizing Amazon Me-
chanical Turk (MT) for developing a video based gesture
analysis system. There have been several efforts to use
MT for various domains that need large example databases,
such as natural language processing [15], and image label-
ing tasks [16], and recently for use with video of moving
rigid objects [21].

We focus our efforts on acquiring annotations of human
motion features like hand motion and complex 3D config-
urations like hand shape and 3D pose. Sometimes called
match-moving, this is a typical task in high-end visual ef-
fects studios and an entire suite of internal and external
tools [8, 9, 2] are used by professionally trained “tracking-
artists.” Academic researchers also have a need for this
and high-end annotation tools [10, 13] have been developed
and used by gesture annotation experts previously. In both

Figure 1. An example annotation from the pilot dataset:
Vladimir Zhirinovsky making an open-palmed, symmetrical,
double-handed loop.

cases, a large budget is usually necessary to annotate a small
set of video.

In support of our research, we generally attempt to build
systems that can extract patterns and statistics from large
video databases, and can be used for various tasks in ges-
ture analysis, to aid social and behavioral sciences, and for
general search and visualization tools centered around un-
derstanding human motion. We previously developed a pro-
totype system that can learn statistical models of individ-
ual “motion style” for subjects that are engaged in speaking
actions. We have successfully applied this to a variety of
tasks, including automated identification of personal speak-
ing style, and to more general body motion styles [20]. That
specific system uses no explicit representation of hand mo-
tion, or gesture types. This paper describes our efforts to-
ward building a richer training database that contains de-
tailed labels of hand motion and pose information.

The challenge is to transform a complex, labor intensive
task such that it can be broken up into smaller units and
completed by a variety of users without expert knowledge
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of the domain. We need to avoid treating every individual
frame as a task, as our database has on the order of millions
of frames and this would be cost-prohibitive by any conser-
vative estimate. We employ a staggered approach that alter-
nates between human input and clustering techniques, such
as affinity propagation [5] and pattern tracking techniques
[11]. The UI attempts to replicate only the bare essentials
of high-end tools. In some cases we introduce new ways
of doing the task. This is a non-trivial user interface design
challenge, targeting the interface to crowd-sourced workers
such that it can be learned quickly with minimal training,
but provides us with quality data.

This paper details the system design, which overall is a
set of vision and machine learning tools running on a server,
and Adobe Flash on the front-end, facing workers who have
been sourced through Mechanical Turk. We also describe
the design and deployment of HITs. This MT-based system
complements our other research efforts that use fully auto-
matic vision and statistical learning approaches to extract
similarly meaningful representations from video data [20].

2. Related Work

2.1. Annotation Tools

The task of tracking the position of features or objects
in a video, and “matching” the 3D pose and configuration
of rigid and articulated objects in 3D is, in the visual ef-
fects industry, known as “match-moving” or “rotoscoping.”
Methods date back over 100 years when animators traced
film on light tables to produce animations. Most recent
high-end tools are based on supplying the user with an inter-
face that is similar to 3D key-frame animation (such as seen
in Autodesk Maya and other tools). The user can “scrub”
the video back and forth, and can click on locations to set
key-frames. The frames in between are either interpolated
or semi-automatically tracked with general pattern trackers
([8, 9] to name a few). Most recent advances that are clos-
est to our philosophy are techniques that blend hand anno-
tations and automatic tracking and model estimation in an
interactive way [3, 2]. Another community, which includes
gesture and multi-modal communication researchers, use a
different set of annotation tools. The most popular ones are
ANVIL [10] and MacVisSTA [13]. Both tools are more tar-
geted for time-based annotation of text tags, but have some
capability of annotating spatial information. Neither tool
permits annotation of 3D configuration information. All
tools discussed so far have in common a high level of com-
plexity that requires a user to undergo some training. In
some cases the level of training needed to use these tools is
extensive. This is not possible for MT users: they need to
understand how to use an annotation tool in a very limited
time. Another problem with the high-end tools is that they
are generally not platform independent. For MT we don’t

want to require that users have a specific operating system.
Therefore we employ a web-based interface primarily writ-
ten in Flash.

LabelMe [14] and Sorokin [7] provide web-based tool-
boxes for image annotations. And most recently a video
extension [21] has been reported. For our specific domain,
these toolboxes do not provide the necessary functional-
ity yet, since our annotations generally require handling of
non-rigid objects and nuanced, high-speed motions.

2.2. Gesture Tracking

With the domain of human gesture tracking, there is a
wide variety of approaches available that can automatically
track and recognize human gestures and human motion (in-
cluding our own work [19, 20]). It is beyond the scope of
this paper to review all related tracking techniques and we
refer to [4] for a survey. Fully automatic tracking of gestures
is not solved yet for the general case. Part of this effort is
to build a training database that will be used to develop and
further improve such gesture tracking systems.

3. Our Approach
Our goal in this case study is to annotate videos of people

while they are gesturing. This could include a wide range of
motions involving any parts of the body, but for this initial
attempt, we focus specifically on hand motions. We split
this into two stages: 1) Annotate the locations of the hands
in all frames, and 2) determine the pose and 3D configura-
tion of each identified hand image. Figure 2 outlines our
pipeline. We alternate between human based hand annota-
tions and automatic tracking/clustering. As a preprocess,
our videos first need to be cut into shorter sub-intervals,
such that each HIT will require approximately the same
amount of human effort. All videos remain on our server,
and the human annotator communicates with the system
through the Mechanical Turk site, which has embedded in
it our own Flash based interface.

3.1. Embedded Flash User Interface

Flash provides access to a library of standard UI wid-
gets. These widgets can be fully customized with Action-
script and combined with advanced logic to create new con-
trols. Though the system requires a proprietary browser
plugin, this plugin is available on all major consumer op-
erating systems and behaves consistently across platforms.
The main alternative to Flash is Javascript. For lightweight,
HTML-oriented manipulations, this would be the preferred
approach. But once the system becomes dependent on sub-
tle, visual feedback– in particular things that would require
advanced CSS properties in the dynamic HTML paradigm–
the likelihood of breaking across platforms goes up. For the
sake of rapid, research-oriented experimentation, it is ideal



to develop and test on a single platform. In the case of a
Flash application, a user will either have the correct plugin
or not. And in the latter case, they simply pass over the
task and leave it for someone else. This is distinctly differ-
ent from a traditional website that is intended to work for
the maximum number of users and include fallback mecha-
nisms, such as plaintext versions of a page for browsers that
do not support a particular web technology.

3.2. Step 1: Tracking HIT

Our first goal is to locate the hands in all frames of the
video. An exhaustive approach would be to show the user
every individual frame and instruct her to click the center of
each hand, advancing to the next frame after each click. But
in the case of real human motion, the track of the hands may
obey strong spatio-temporal constraints. There are typically
spans of time where a hand stays right around a particular
spot. In other time spans, a hand will track linearly between
two key points. By adding a basic key-framing system to

Figure 2. Information flow between artificial intelligence tasks and
human intelligence tasks.

the interface, it is possible for the user to annotate a large
number of frames with a relatively small number of clicks.

An early version of the interface had a set of clickable
buttons for scanning back and forward along the movie’s
time dimension. If one attempts the annotation task, it is
immediately apparent that having to move the cursor back
and forth between these buttons and the main annotation
panel is cumbersome. By linking keyboard input to the scan
buttons, this problem is solved. The user can quickly skip
ahead with the press of a key, while keeping the mouse fixed
in its previous location– generally a good starting point for
the next annotation click.

If the user can only skip ahead by a single frame, the
user may begin to annotate every single frame, like in the
original, exhaustive case. Another variation of the inter-
face was designed that provides two sets of buttons and two
corresponding sets of keyboard shortcuts. One set of con-
trols skips forward and back by a single frame, while the
other skips forward and back by ten frames. The users were
instructed to use the skip buttons as appropriate, but ulti-
mately to annotate with sufficient density to keep the hand
within a bounding circle. Many users performed the task
perfectly, adding additional keyframes where necessary to
capture quick changes in position. Some users took full ad-
vantage of the skip-ten feature, and annotated exactly every
ten frames, despite the instructions. Many motions are non-
linear in nature and if the user samples this with insufficient
density, the tracking will be poor.

The simplest approach to improving annotations was to
cut the skip interval in half. This tended to slow down power
users but caused the average user to put in more keyframes.

In practice, the work performed by crowd-sourced labor
needs to be validated by a person. For simplicity, this was
performed ‘in-house’ by a researcher, though it could also
be performed by MT in the future. In the case that tracking
for a segment was insufficient, the work was rejected and

Figure 3. Our tracking interface for Mechanical Turk.



the frames were sent back into the MT queue for a second
attempt at processing.

3.3. Step 2: Pose Clustering

After the tracking HIT, we are left with a collection of
image patches, all representing the same subject’s hands
with a consistent camera, scene, and lighting. Given these
consistencies, it is feasible to use simple matching tech-
niques, such as normalized cross correlation (NCC). For all
patches of a particular hand, we compute all NCC scores.
This produces two results. First, by taking the maximum
NCC within a window [11] two time-adjacent patches can
be more precisely aligned. Second, these maximum scores
can be used as rough affinity scores in a clustering approach.
(Another option for matching are optical flow based or re-
gion based tracking techniques that perform a full affine
warp or more complex warps, but in our experience those
techniques frequently fail on complex hand gestures with
small image support).

To compute clusters of similar patches, we use affinity
propagation [5] on the matrix of NCC scores, taking ad-
vantage of Frey and Dueck’s publicly available implemen-
tation. By setting high confidence thresholds, in a typical
video sequence we can reduce a set of patches down to a
set of templates that is a fraction of the original number of
frames. We can now send these entire clusters to MT for
evaluation in the next stage.

Steps 1 and 2 illustrate a key philosophy of the pipeline:
Some tasks are better suited for people, while others are
more appropriate for an algorithm. People are far better at
accurately locating hands than any currently existing algo-
rithm, but would find the clustering task performed by NCC
and affinity propagation to be challenging and tedious.

3.4. Step 3: Pose HIT and Configuration Annota-
tion

The next task is to determine the pose of every hand
patch. Rather than sending every individual patch for eval-
uation, we send entire clusters as groups. The clustering is
not perfect, so we also ask the user to first validate the clus-
ter before matching the pose. The user can mark individual
patches within the cluster as being incorrect, but then pro-
ceed to identify the pose for the remaining, correct patches.

One component of the pose-matching task concerns the
positions of the fingers within the hand. Considering the
raw dimensionality of finger position alone, it is a system of
14 joints, each with 1 or 2 degrees of freedom. It is not sur-
prising that hand pose has such high dimensionality, given
that ours hands’ versatility is a key advantage of our species.
At the same time, the input videos we are concerned with
involve people speaking, using the hands only incidentally.
To reduce the complexity of the finger positioning, we de-
veloped a set of base poses (as seen in the middle of figure

4). By separating finger position from overall hand pose,
we can simplify the user interface. The remaining question
is how to orient the hand in three-space to align it with the
input pose. This can be achieved with three rotations.

The interface provides the user with several base pose
buttons that represent finger positioning but not angle. Af-
ter the user selects a pose, she can tune three knobs to ro-
tate the hand into place. With each adjustment of a rotation
knob, the user immediately sees the resulting image and can
compare it directly to the input patch. Several options were
considered for producing the images for this real-time feed-
back. One option was to take photos of a human subject’s
real hand in different, canonical positions. But this would
require manual alignment and might not look consistent
from frame to frame. Another option was to custom-build a
rendering system in Flash to produce graphics. In this case,
the time it would take for implementation was prohibitive.
We opted instead to use Poser Pro software [6] to render a
set of fixed poses. Poser is highly scriptable and using the
built-in Python module it was possible to automate the po-
sitioning and export of many hand images. We created 7
finger poses, 10 axial rotations, and 7 side-side rotations for
a total of 490 images. The third rotational dimension is ob-
tained for free by simply rotating the final 2D image in plane
using built-in Flash support including anti-aliasing. By im-
porting the pre-rendered hand images into Flash, we create
a Poser “Light” tool that is specifically catered to hand pos-
ing. Once again, the results of this task need to be validated
by another person and for simplicity this was done by a re-

Figure 4. Our cluster verification and pose estimation interface for
Mechanical Turk.



searcher, but could be handled by MT in the future.

3.5. Step 4: Post Processing Poses

After step 3, it is possible that many hand patches have
not been estimated. If a hand was placed in the wrong clus-
ter and identified as such by a user in the cluster validation
phase, we do not know its pose. One approach would be to
send any rejected patches back to MT for a second attempt.
But this becomes expensive because now a full HIT must
be devoted to a single patch. Our approach is to backfill the
data using NCC-based post-processing.

For any unidentified patch, we compute the NCC dis-
tance to the image patch of each pose cluster center. We
then can compute the weighted average of the closest K
clusters using the NCC values and pose annotations of that
specific cluster. (To compute the weighted average, we need
to convert the pose angles into the twist representation for
better interpolation properties [12]). Optionally we can do
this on existing pose annotations for further fine tuning.
Based on a preliminary sampling of 200 random frames,
this technique had an accuracy of 77% correct pose estima-
tion. We are currently using these predicted values in some
experiments (see below), but do not use them as “ground-
truth” training data.

4. Case Study
We previously collected a database of 189 videos of

politicians and public figures giving speeches. Our efforts
concerned processing all videos with automatic motion esti-
mation and machine learning techniques (similar to bag-of-
feature representations that do not need explicit labels, only
coarse motion-style targets) and we got promising results
for various recognition and clustering tasks [19, 20].

For the next data collection phase, we intend to fully
annotate this database with hand locations and pose. At
the time of this paper submission, our MT based system
produced 23, 667 labelled video frames on a smaller pilot
database of 10 videos. All our analyses in this case study
are based on this smaller pilot database, but we expect to
have the entire database annotated soon.

This pilot database was labeled with 158 “Tracking
HITs” containing 6, 769 keyframe click annotations and
1612 “Posing HIT” annotations. We experimented with dif-
ferent pay rates for the two types of HITs, and got good re-
sults with $0.25 for each 150 frame Tracking HIT and $0.05
for each Posing HIT that contained on average 9.5 patches.
The total cost was around $120. If we had used a single
frame approach, asking users to label the hand position and
pose for each individual frame, this would require as many
HITs as input frames. Assuming this task costs at least as
much as a single Posing HIT, the total cost is more than
$1000 and annotating the full video database would cost

over $10, 000.
Both, the low price of HITs and the good quality of the

results surprised us. We had a savings of an order of magni-
tude over a frame-based MT approach or compared to using
a professional service1.

We have begun to use this data for two applications:
for interesting visualization applications by domain experts,
and to increase the annotation richness of training data for
our automatic gesture tracking and classification system.

For assessment purposes, we built a preliminary suite
of visualization tools that can reveal frame-based, gesture-
based, and subject-based aspects of the pilot database. Fig-
ure 5 shows visualizations of the different “kinespheres” for
different subjects. Figure 6 shows a few automatic match-
ing examples of typical gestures in one example video to
a specific subject or to the entire database. This allows
us to analyze body-language in video more quantitatively,
for example in counting the occurrence of specific gestures,
poses, and other attributes in a speech.

1 If we contracted with a professional studio, it would have taken each
tracking artist between 4 − 20 seconds for the tracking task of two hands
per frame and 8− 40 seconds for the posing task [1]. At a rate of $50/h,
the pilot database would cost $6, 000− $30, 000.

Figure 5. The hand gesture kinesphere for different subjects.
(Video is not mirrored, so left hand kinesphere appears on the
right and vice versa.) Barack Obama (first row) has a stronger
bimodal distribution with his right hand. Hillary Clinton (second
row) shows this effect more on her left. Vladimir Zhirinovsky (last
row) has a wide distribution of gestures and the largest kinesphere.



Feature extraction and dimensionality reduction Di-
mensionality reduction is often used for visualization of
high-dimensional datasets. In our case, we use such a vi-
sualization to observe structure amongst and within gestur-
ing subjects. Two primary aims are to 1) note similarities
and differences amongst subjects and 2) discover atomic
“movemes” characteristic to, and shared amongst individ-
uals. Both tasks can be performed by watching the (anno-
tated) videos, but this is extremely time-intensive.

For each video frame, we first convert the output of the
tracking and pose annotations into a 24-dimensional vec-
tor representing velocity, pose orientation (twist), and pose

Figure 6. Example gesture matches within subjects and across
subjects. Each column has similar gestures. Any window of mo-
tion can be compared to all other windows of the same length us-
ing an L2-distance. By applying non-maximal suppression, we
find good candidate matches, that can then be verified visually.

type (1-of-K encoding where K = 7) for each hand. While
we could directly apply dimensionality reduction to this
representation, we first perform a type of feature extraction
that extracts an overcomplete, latent binary representation
from the original data [17]. The reasoning for this step is
twofold. First, our feature extraction method explicitly cap-
tures the dynamics of the gesture data. Each binary latent
vector actually represents a local window in time. Secondly,
the latent representation is distributed, where many differ-
ent latent variables can interact to explain the data. This
abstract representation is a more salient input to the dimen-
sionality reduction step. For example, we do not have to
worry about weighting velocity vs. pose type or orientation:
this has already been figured out by the dynamical model.
Nor do we need to worry about how the heterogeneous in-
put types (i.e. the velocity and twists are real-valued but
the pose type is multinomial) affect dimensionality reduc-
tion. In our experiments, we use 100 binary variables and
a third-order dynamical model. Therefore the output of the
feature extraction stage are length-100 binary vectors for
each (overlapping) window of 4 frames. To this representa-
tion, we then applied t-SNE [18] to reduce the vectors to di-
mension 2 (Figure 7). We note that while person labels have
been used in preparing this plot (to add color), both feature
extraction and dimensionality reduction are completely un-
supervised.
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Figure 7. Dimensionality-reduced annotations. Data points rep-
resent overlapping 4-frame windows. We note that frames of a
particular subject tend to cluster together. At a finer grain, we note
the emergence of “strokes” in 2D which correspond to spatially
and temporally local “movemes” in video.



5. Deployment at the Snowbird workshop

We recently deployed our system as part of an effort to
analyze the nonverbal communication of academics. We
digitally recorded all of the contributing and invited speak-
ers at the Learning Workshop, held in Snowbird, Utah be-
tween April 6-9, 2010. We recorded 28 speakers, with
talks ranging from 10-40 minutes each. After each block
of speakers, video excerpts were chosen, then sent into the
first section of the pipeline described in this paper. (We did
not run the pose estimation stage.)

We were able to obtain accurate hand and head tracks
for each of the speakers within hours of their talks. This
allowed us to perform a simple analysis of the academics
which included 1) clustering motion tracks; 2) ranking
speakers based on the “energy” exhumed in each talk; and
3) locating specific gestures (e.g. hand-waving) across
speakers. We presented our analysis during the conclud-
ing session of the workshop, to demonstrate the automa-
tion and quick turn-around of the system. This experiment
demonstrates the flexibility and efficiency with which data
can be collected for “on-site” gesture analysis using crowd-
sourced motion tracking.

6. Discussion

The system here described is a proof of concept for opti-
mizing large, video-based annotation tasks. Our pilot study
shows the potential multiplier effect obtained by combin-
ing human intelligence and artificial intelligence in a single
pipeline. By proceeding with experiments on our entire mo-
tion database, we hope to show that we can get even better
than a linear speedup. If an input video is large enough,
we believe performing hand tracking on a small part of the
input, will provide enough training data to build an auto-
matic detector for filling in other frames. Likewise, as input
size increases, pose clusters will grow, and it will take less
human effort per pose on average.

For the next iteration, we envision a more generalized
pipeline in which certain tasks can be attempted inter-
changeably by an artificial or a human intelligence. For
example, an AI hand detector could attempt to locate the
hands in a video frame, and only if the confidence value is
low, does that particular task need to be sent to a person.
Both HIT and AIT results could go to the same approval
queue. As the model’s training and performance increases
over time, human effort can be reallocated toward approval
tasks, away from the more time-intensive tracking and pose
identification.
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